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Abstract. Meromorphic susceptibility is a material parameter that appears usually in pump–
probe experiments, where so-called degenerate susceptibilities, as a function of angular
frequency, describe the radiation and material interaction. Kramers–Kronig dispersion relations
are invalid for meromorphic susceptibilities. Phase retrieval by the maximum-entropy model
from the modulus of total susceptibility, with poles and zeros in the complex plane, is considered.
Complex analysis is employed in the description of the nature of the meromorphic total
susceptibility.

1. Introduction

During the past few decades, nonlinear optical spectroscopies have become important
tools in material sciences. One major physical quantity that describes strong electric field
interaction with material is the nonlinear susceptibility. The research on dispersion theory
of nonlinear susceptibilities was started at the beginning of the 1960s and has continued
to the present day [1–10]. However, it took a long time before the consistency between
experiments and the theory could be shown [11]. Nevertheless, it has been shown that
the Kramers–Kronig dispersion relations can fail in steady-state nonlinear spectroscopy
as devised by Yariv for the case of a two-level atom [12]. In addition quite recently
Tokunagaet al [13–15] have shown by theoretical and experimental studies that the
Kramers–Kronig relations are not always valid in femtosecond spectroscopy, that is to
say in time-resolved spectroscopy of short pump and probe light pulses. A main feature
with such linear or nonlinear pathological susceptibilities is that they are meromorphic
functions [16]. Meromorphism is a property of a complex function that is holomorphic
almost everywhere in the complex plane except on essential singular points called poles.
Poles appear simultaneously in the upper and lower half planes.

With the aid of the maximum-entropy model we have examined meromorphic
susceptibility by applying a phase retrieval procedure to yield the phase of the complex
degenerate nonlinear susceptibility from its modulus [17]. Such a phase retrieval has been
successfully applied also for data inversion of optical constants from linear reflectances
[18–21], as well as resolving the real and imaginary parts of CARS spectra [22], and those
related to the third-harmonic-wave generation from polysilanes [23].
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In this paper we consider dispersion theory of meromorphic susceptibilities. We show by
an example that phase retrieval by the maximum-entropy model (MEM) can resolve the real
and imaginary parts oftotal meromorphic susceptibility. So far, our phase retrieval studies
have been devoted to the nonlinear meromorphic susceptibilities. The total susceptibility that
describes the overall material response to external electric fields includes both the linear and
nonlinear contributions. A new aspect, compared with our previous phase retrieval studies,
is that poles and alsozeros of the total susceptibility appear simultaneously in the same
half plane. Therefore, the applicability of the phase retrieval procedure is generalized to a
new class of functions that possess zeros in the complex plane. Furthermore, we consider
the mathematical concepts that are needed to estimate whether a total susceptibility is
meromorphic or not. For this purpose we exploit the results of complex analysis.

2. Meromorphic susceptibility and phase retrieval

A meromorphic total susceptibility is simply a function that has poles in both halves of
the complex angular frequency plane. It is holomorphic everywhere except at the poles.
The appearances of the poles in the upper half plane mean that the conventional Kramers–
Kronig dispersion relations have to be changed to take into account the nonzero residue
terms [17, 24]. In this case an appropriate asymptotic fall of the complex susceptibility at
infinite angular frequencies is needed and it is provided, in the classical description, by
inspection of the Newtonian mechanics of the particle system. Unfortunately, we cannot
usually gain information on the residues from measured spectra. Hence another type of data
analysis is needed. Therefore, we consider the application of MEM for resolving the real
and imaginary parts of meromorphic total susceptibility.

The causality conditions for meromorphic susceptibility were considered by Kircheva
and Hadjichristov [10] who pointed out that causality is a necessary but not sufficient
condition for the existence of the Kramers–Kronig relations. The breaking of the causality
condition appears for instance in femtosecond spectroscopy, i.e. for cases where the pump
pulse has caused polarization of the charge system before the incidence of the probe pulse.
Such a physical phenomenon is governed by the simultaneous appearance of poles in both
half planes [13].

As an example of a meromorphic total susceptibility we consider the classical model of
a two-level atom as treated by Yariv. Accordingly, the total susceptibility that is related to
the saturation of the probe, which is used also for pumping, can be written as

χ(ω) = C[(ω0− ω)+ i/T2][(ω0− ω)2+ (1+ I/Is)/T 2
2 ]−1 (1)

whereC is a constant,ω0 the transition (angular) frequency,T2 the dephasing time,I the
pump irradiance andIs the saturation irradiance. This function has interesting properties
that include the simultaneous appearance of two symmetric poles, in opposite half planes,
and also a zero in the upper half plane. Then the logarithm of the susceptibility, ln|χ |,
which is the crucial function in phase retrieval by the Kramers–Kronig relations, explodes at
such singular points of the logarithm and can no longer be considered as a regular function
in the complex plane. A function that is holomorphic in the upper half plane, but has zeros
in the upper half plane and poles in the lower half plane, in a manner such that there is a
symmetry among the zeros and the poles, can be described by the Blaschke product [25],
which is then a meromorphic function [26] in the whole complex plane. Evidently the total
susceptibility of (1), which could be described by a single Blaschke factor, does not possess
symmetry among the zero and the poles. In addition, it is meromorphic already in the
upper half plane. Almost the same behaviour, but related to Raman excitation profiles, has
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been recently described by Lee [27]. However, in the case of phase retrieval from Raman
excitation profiles the poles lie strictly in one half plane and the zeros in the other half plane.
In such a case the related complex function can be treated as a holomorphic function in
the half plane where the zeros lie. As a result of the zeros the phase change of the electric
field can exceed the value 2π . Thus, a so-called non-minimum phase retrieval problem
arises. Nevertheless, dispersion relations for the phase retrieval, whose logical foundations
have already been devised by Toll [25], can be applied for non-minimum phase retrieval
from Raman excitation profiles. These relations include the conventional Kramers–Kronig
integral and additional new terms. The situation here is somewhat different since the total
susceptibility has simultaneously a pole and a zero in the same half plane. Generally we
cannot apply a simple model like the one of (1). Then we usually do not know exactly
the number of poles or zeros from any intensity data. Especially, resolving the number and
location of zeros [25], which defines the multiplicity of the phase angle in non-minimum
phase problems, may be problematic with the aid of the measured data. Therefore, the
Kramers–Kronig analyses have been done in non-minimum phase retrieval, so far, only
with theoretical curve models [27].

When working with phase retrieval by MEM, which we abbreviate from now on as
PRMEM, we do not use any logarithm function. This means that we can neglect an ill
behaved function at singular points. Indeed, PRMEM deals only with the modulus of
general type total susceptibility in the present case. The decomposition of the real and
imaginary parts of the degenerate total susceptibility is based on its maximum-entropy
model [19]

χ(ν) = |β| exp[−iφ(ν)]

/[
1+

M∑
k=1

ak exp(−2π ikν)

]
(2)

where the unknown MEM coefficientsak and |β| are obtained by fitting the measured
modulus spectrum|χ(ω)|, ω1 6 ω 6 ω2, by its maximum-entropy model,

|χ(ν)| = |β|
/∣∣∣∣1+ M∑

k=1

ak exp(−2π ikν)

∣∣∣∣. (3)

The variableν is a normalized frequency,ν = (ω − ω1)/(ω2 − ω1). The detailed (phase
retrieval) procedure using (2) and (3) is described elsewhere [21, 23]. The idea of using
MEM in resolvingχ(ω) from its modulus is that now the problem of finding the phase of
χ is reduced to a problem of finding the so-called error phase,φ, in (2). Namely, it has
turned out thatφ is a ‘slowly varying’ function compared to the actual phase. Therefore, it
can be estimated, as done in PRMEM, by a polynomial interpolation,

φ(ν) = B0+ B1ν + · · · + B1ν
L =

L∑
l=0

B1ν
1 (4)

such that the optimum degreeLopt of the polynomial is usually low (typicallyLopt = 1).
The additional information that is now needed to get an estimate toφ(ν), and, thus, for
phase recovery, isL + 1 discrete values ofφ(νl). In practice this means that either the
value of Imχ or Reχ must be known atL+1 discrete frequencies inside the measurement
range. The merit of this type of phase retrieval procedure is that there is no need for data
extrapolations beyond the measured range if compared with the phase retrieval by Kramers–
Kronig relations. In figure 1(a) we show the modulus of the total susceptibility of (1) for
various values of the light intensity ratios. The corresponding error phases,φ, are shown in
figure 1(b). It is notable that low intensity ratioI/Is results in an almost linear line shape to
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φ, whereas a high ratio results a curved line shape. Therefore, in the case of a low intensity
ratio successful phase recovery can be achieved by using a linear estimate forφ; hence,
only two values for Imχ are needed (i.e.,L+1= 2) in addition to the measured spectrum.
In the case of high intensity ratios more additional information is needed. Figures 1(c) and
(d) illustrate this as Reχ and Imχ are computed by PRMEM in case of low (I/Is = 0.1)
and high (I/Is = 1.0) intensity ratios, where corresponding integers areL + 1 = 2 and
L+ 1 = 6. However, since the intensity ratio does not affect to the actual phase function,
χ(ω; I/Is) is best obtained by measuring a low-intensity spectrum|χ(ω); I/Is ≈ 0| in
addition to a high-intensity|χ(ω); I/Is | spectrum, and by computing the phase using the
low intensity data|χ(ω); I/Is ≈ 0|. Obviously PRMEM succeeds well in a phase retrieval
where the Kramers–Kronig relation cannot be applied.

3. Existence of poles and zeros

Quite often we can judge from the knowledge of the material properties and experimental
set-up whether the total susceptibility is expected to be meromorphic or not. However,
the information about the correct number of poles and/or zeros is not usually revealed
by the intensity spectra. This problem can be present also in the spectra analysis of non-
meromorphic Raman excitation profiles. The worst case might be that we have no idea at all
whether the total susceptibility, whose modulus spectrum may resemble a familiar spectral
Lorentzian line shape and therefore be misleading, has a meromorphic nature. Remembering
that all that we may have available is a measured spectrum then the estimation of the
number of poles (or zeros) may become an overwhelming problem. Of course, there is a
mathematical method, namely the argument theorem, that involves a complex function and
its derivative and also complex contour integration in order to estimate the number of poles
and zeros as in the case of the Nyquist stability criterion of amplifiers [28]. Then, one has
to know the function and the derivative as a function of complex variable. In practice the
sole measurable quantity is the modulus of a meromorphic total susceptibility as a function
of a real variable. Therefore, the argument theory does not work in practice. Fortunately
the existence of poles and zeros of a meromorphic function can be estimated using another
type of mathematical model. This model is based on Jensen’s formula [29], which is well
known in complex analysis but has received little attention in dispersion theory of physics.
Jensen’s formula is obtained here by applying a conformal mapping of the upper half plane
(the lower half plane would do as well) onto a unit disc by the transformation

W = (ω − i)(ω + i) (5)

where i is the imaginary unit andω is the angular frequency, which is a real number. Now
the real axis is mapped onto the boundary of the unit disc. We have to consider here the
meromorphic permittivity of the material. The permittivity has the mathematical properties
that are required to fulfil the assumptions imposed on the existence of Jensen’s formula.
The permittivity,ε = 1+χ , whereχ is the total susceptibility, can have zeroszk, and poles
pj , inside the unit disc. Note carefully that the zeros will be at different locations withε

andχ . If we denote the multiplicity of the poles bynj and the multiplicity of zeros bymk,
then we can write Jensen’s formula for the meromorphic permittivity as follows:

(2π)−1
∫ 2π

0
ln |ε(exp(iθ))| dθ = ln |ε(0)| +

∑
k

mk ln |zk|−1−
∑
j

nj ln |pj |−1 (6)

whereW = exp(iθ), |zk| < 1 and |pj | < 1, and furthermoreε(0) is neither zero nor
infinite. The integrand of (6) involves data that are obtained by measurement. At first
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(a)

(b)

Figure 1. (a) Total susceptibility spectra|χ(ω; I )|2 with intensity ratiosI/Is = 0, 0.1, 0.5, 1.0
and 2.0. (b) Corresponding error phase functions. Recovered (c) Reχ and (d) Imχ curves in
cases of low (I/Is = 0.1) and high (I/Is = 1.0) intensity ratios.

the estimation of the valueε(0) seems to be problematic, since the permittivity calculated
at the centre of the unit disc corresponds to the imaginary frequency,i, in the original
angular frequency plane. Fortunately, the purely imaginary frequency matches quite well
the zero-frequency value of the permittivity in the original angular frequency plane. Indeed
the features of the optical spectra of the permittivity are very far away from the ‘static
value’ of the permittivity at i. This static value is practically speaking governed by the
linear susceptibility of a material. Then it is possible to estimate the permittivity at the
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(c)

(d)

Figure 1. (Continued)

centre of the unit disc with the sum rule given by King [30] as follows:

ε(0) = 1+ 2

φ

∫ ∞
0
ω Imχ(1)(ω) dω/(ω2+ 1) (7)

where Im stands for the imaginary part andχ(1) is the linear complex susceptibility. Note
that we first wish to construct the meromorphic total susceptibility by the PRMEM procedure
and thereafter try to estimate the existence of zeros and poles by equation (6). In the event
that the total susceptibility has strong asymptotic fall-off, integrations at limited integration
intervals in equations (6) and (7) are sufficient. If the total susceptibility has a weak
asymptotic fall-off, then the data extrapolations are certainly needed. A solution for the
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last-mentioned case could be the coupling of PRMEM procedure with the method of spectra
estimations using the model of Hulthen [31]. According to Hulthen it is possible to estimate
a spectrum|χ | beyond the measurement range provided that the real and imaginary parts
of χ are known within some limits.

4. Conclusions

We have presented brief notes about the generalization of the phase retrieval from the
modulus of a meromorphic total susceptibility, with poles and zeros, by the maximum-
entropy model. In addition, a mathematical basis for the estimation of zeros and poles of
meromorphic permittivity was introduced. The estimation is based on Jensen’s formula,
which is a well known result in complex analysis but has not received, as far as the
authors known, attention in dispersion theory. Jensen’s formula may find applications also
in spectrum analysis of the Raman emission profiles.
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